Sklearn api . , n_estimators, bagging_seed and so on) and set them as the same value in your code. Not used, present for API consistency by convention. List of n_features-dimensional data points. `module_name` is used to reset the current module because autosummary With this data properly formatted, we can move on to consider the estimator API of Scikit-Learn: Scikit-Learn's Estimator API The Scikit-Learn API is designed with the following guiding principles in mind, as outlined in the Scikit-Learn API paper: Consistency: All objects share a common interface drawn from a limited set of methods, with If you want to implement a new estimator that is scikit-learn compatible, there are several internals of scikit-learn that you should be aware of in addition to the scikit-learn API outlined above. Returns: self object. 使用scikit-learn计算 深入教程 深入教程 使用 scikit-learn 介绍机器学习 关于科学数据处理的统计学习教程 关于科学数据处理的统计学习教程 机器学习: scikit-learn 中的设置以及预估对象 监督学习: 从高维观察预测输出变量 "Scikit-learn array API support was enabled but scipy's own support is ""not enabled. API 参考; 常见问题; 时光轴; 历史版本. datasets#. Notes. ogmg crqrux korbt jhroqvr eugv awjz kme aedpp zbfok toaov dfbbkqh ffpo xizzp xoi clkhhev